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Abstract
We discuss the various element-specific methods to obtain the magnetocrys-
talline anisotropy energy (MAE) of thin films, multilayers and surfaces. X-ray
magnetic circular dichroism has recently emerged as a routine method, where
the orbital magnetic moment of 3d transition metals can be determined using
the sum rule for the L2,3 absorption spectra. The obtained orbital moment can
be related to the MAE using Bruno’s model, which is only valid under the as-
sumption that the majority-spin subband is completely filled. This limitation
can be avoided by employing x-ray magnetic linear dichroism (XMLD). The
XMLD branching ratio is proportional to the anisotropy in the spin–orbit in-
teraction, which, in second-order perturbation, can be related to the MAE. We
present an expression for the angular dependence of the sum rules, which can
be used to determine the magnetic anisotropy from the linear dichroism for a
system with arbitrary point-group symmetry.

1. Introduction

Magnetic monolayers and multilayers exhibit a rich variety of unusual magnetic properties
arising from their reduced dimensionality. The ability to grow epitaxial thin films has led to
materials with novel magnetic properties, such as perpendicular magnetic anisotropy (PMA),
giant magnetoresistance and exchange biasing. The preferred orientation of the magnetization
is determined by the magnetocrystalline anisotropy energy (MAE), which is the change in the
free energy for a crystal upon rotation of the magnetization. In thin films, multilayers and at
surfaces, the MAE differs often strongly from the bulk value due to symmetry breaking of the
lattice. It is possible to manipulate the magnetic anisotropy by varying the individual layer
thickness and an appropriate choice of the elements. The driving force behind this research
has been the ability to grow ultra-thin films with PMA, which is particularly appealing for the
magnetic recording industry by offering increased storage density.

Thin films of only a few monolayers in heterogeneous systems require ultra-sensitive and
element-selective magnetic probes. Separation of the magnetic moment into spin and orbital
parts will be required to study the influence of the crystalline field on the magnetic anisotropy.
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So far, x-ray magnetic circular dichroism (XMCD), which measures the difference between
the x-ray absorption with light helicity vector parallel and antiparallel to the magnetization
direction, has been the sole technique able to determine the orbital moments in an element-
specific manner. We shall briefly discuss how one can obtain the MAE from the XMCD and
what are the limitations. This procedure has gained widespread popularity, not least because the
sum rules give the spin and orbital moments in a quantitative and straightforward manner [1–6].
Recently, an alternative method using the linear counterpart of XMCD was proposed based
on x-ray magnetic linear dichroism (XMLD) [7]. Although XMLD is considered to be less
straightforward than XMCD [8, 9], a new sum rule has designated it as an element-specific
probe of the spin–orbit anisotropy, which is directly proportional to the MAE [7]. This quantity
can be extracted from the branching ratio of the L2,3 x-ray absorption spectra (XAS) due to the
fact that the strong core–hole spin–orbit interaction in the final state acts as a magnifying glass
for the small valence-band spin–orbit interaction [10–12]. Its anisotropy can be determined by
rotating either the applied magnetic field or the linear polarization of the x-rays with respect
to the easy axis of magnetization [7].

The outline of the paper is as follows. In section 2 we discuss the capability of XMCD
to determine the MAE. In the next sections we discuss in detail how to extract the anisotropic
spin–orbit interaction from the integrated XMLD signal using the sum rule. The isotropic spin–
orbit interaction and the isotropic x-ray absorption are discussed in section 3. Section 4 gives
some general definitions concerning the polarized spectra and the ground state tensors needed
for the discussion that follows. In section 5 we treat the angular dependence of the XMLD in
spherical symmetry. This is generalized to arbitrary point group symmetry in section 6. The
latter, slightly more complicated approach, allows us to determine the MAE for any symmetry.
A specific example will be given in section 7 for a system with D2 symmetry. Conclusions are
drawn in section 8.

2. X-ray magnetic circular dichroism

The use of XMCD to determine the element-specific orbital magnetization has been perceived
as a breakthrough in the quantitative assessment of the MAE [4, 5]. This procedure requires
two steps.

In the first step, the orbital magnetization sum rule is evoked [1]

P̂ · L
nh

≈ −4

3

ρ1 − ρ−1

ρ1 + ρ−1
(1)

where P̂ is the light helicity vector, L is the expectation value of the orbital moment, nh is
the number of 3d holes and ρ1 and ρ−1 are the integrated intensities of the L2,3 absorption
signal recorded with right and left circular polarization, respectively. Equation (1) states
that the projected orbital moment per hole is proportional to the normalized XMCD signal.
Although this equation requires several assumptions [13], it is generally assumed that the
orbital polarization can be obtained within an accuracy of ∼10%. The normalization of the
sum spectrum contributes to most of the uncertainty due to the background correction together
with the choice of the energy cut-off. Furthermore, when the applied magnetic field is not
along one of the crystalline axes, the spin and orbital moment will be non-collinear, resulting
in an apparently smaller orbital moment [5, 14–16].

In the second step of the procedure, the orbital moment—deduced from the sum rule—is
related to the MAE using Bruno’s model [17]. The second-order change in the energy due to
a magnetization along the unit vector of the spin magnetic moment, Ŝ = 2S, in 3d transition
metals is
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E(Ŝ) = − 1
4Cζ Ŝ · 〈L〉 (2)

where ζ is the radial part of the 3d spin–orbit interaction and C is a proportionality
constant [5, 18]. Equation (2) assumes the absence of holes in the majority band and neglects
spin-flip transitions. This limitation is circumvented by writing the magnetic energy as a
perturbation of the angular part of the spin–orbit interaction, 1

2L · Ŝ,

E(Ŝ) = − 1
4Cζ 〈L · Ŝ〉 ≈ − 1

4Cζ Ŝ · [〈L↓〉 − 〈L↑〉] = − 1
4Cζ Ŝ · [〈L〉 − 2〈L↑〉] (3)

where 〈L↑(↓)〉 is the expectation value of the majority (minority) spin subband. Comparison
of equations (2) and (3) shows that in Bruno’s model it is assumed that 〈L↑〉 = 0. This
requires that the majority spin band is completely filled, which is usually not the case. The
XMCD sum rule provides only the total orbital moment, 〈L〉 = 〈L↓〉 + 〈L↑〉. Precise values
of the separate subband orbital moments are difficult to establish and depend in a subtle way
on the details of the band structure [19]. Moreover, 〈L · Ŝ〉 includes also non-diagonal terms,
1
2 (L+S− + L−S+), which give rise to a spin-flip contribution in the magnetic energy [20]. The
latter can be expressed as a contribution of the magnetic dipole term, 〈T 〉 [20].

The MAE can be measured as

�E ≡ E(M̂ ⊥ ε̂) − E(M̂ ‖ ε̂) (4)

where M̂ is the magnetization direction and ε̂ the easy direction of magnetization.
An interesting variation of the above method is to replace the first step by transverse

XMCD. In this case the anisotropy in the orbital moment can be determined in a single geometry
instead of taking the difference between two geometries with perpendicular magnetization
directions as given in equation (4). This is done using the so-called forbidden geometry, i.e.
by taking the direction of the circularly polarized beam perpendicular to the magnetization
direction, which should be along a non-symmetry direction of the sample. Then the direction
of the orbital moment is settled by the competition between the crystal–field interaction and
the spin–orbit coupling [14,21]. The spin–orbit coupling tries to align L parallel to S, whereas
the crystal field prefers an alignment of L along the easy direction of magnetization, which is
along a principal axis of the lattice. Consequently, L is no longer collinear with S but has a
small component perpendicular to S. This component is parallel to the beam direction, and
hence the sum rule provides a direct determination of the anisotropy in L.

3. Isotropic spin–orbit interaction

The above considerations, and especially equation (3), suggest that it is more advantageous
to obtain the MAE directly from the anisotropy in the spin–orbit interaction, 〈L · S〉. Already
in 1988, Thole and van der Laan [10–12] demonstrated that the spin–orbit interaction can
be obtained from the branching ratio of the spin–orbit split core level in the isotropic x-ray
absorption spectrum. More recently it was shown that the isotropic signal also contains a
contribution of the anisotropy in the spin–orbit interaction [7]. The operator 〈L · S〉 is a scalar
in the total angular momentum, j ; however, it is a vector property in the orbital and spin
magnetic moments. This means that although the expectation value is independent of the
reference frame, i.e. the Ẑ-direction, it depends on the magnetization direction, M̂ .

Assume, for a 3d transition metal system, a model Hamiltonian

H = Vcf(ε̂) + ζL · S + S(M̂) (5)

with Vcf � ζ � M . A crystal field, Vcf , with cylinder symmetry (SO2) is along the
direction of the easy axis of magnetization, ε̂. The magnetization, M̂ , is along the polar
angle ϑ = � (ε̂ · M̂). The crystal field does not act on the spin, so that the spin moment, S, is
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isotropic, having its direction along M̂ . Since the crystal field acts only on the orbital part of
the wavefunction, the orbital moment is given by a tensor relation L = R · Ŝ, so that

〈L(ϑ)〉 = 〈Rz〉 cos2 ϑ + 〈Rx〉 sin2 ϑ (6)

where 〈Rk〉 are Cartesian tensor components. The physical interpretation is as follows. The
spin–orbit interaction and the crystalline field are trying to align L parallel to S and parallel to
ε̂, respectively. The result is that L will be directed somewhere between these two directions
depending on the relative strength of both interactions. Along the high-symmetry directions,
L and S will be parallel. The expectation values of the orbital moment will be different along
the different high-symmetry directions, z and x, where the minimal value is found along ε̂.

The SO2 symmetry permits one monopole and one quadrupole moment. Hence, we can
define the isotropic and anisotropic part as

〈R0〉 ≡ 1
3 [〈Rx〉 + 〈Ry〉 + 〈Rz〉] (7)

〈R2
0〉 ≡ 1

3 [2〈Rz〉 − 〈Rx〉 − 〈Ry〉] (8)

which transform equation (6) to

〈L(M̂)〉 = 〈R0〉 + 〈R2
0〉C2

0 (M̂) (9)

where C2
0 (M̂) = 3

2 cos2 ϑ − 1
2 . The superscripts give the multipole moments; the subscripts

give its components. The isotropic value of 〈L〉 is obtained at the magic angle, where C2
0

vanishes, i.e. at ϑ = 54.74◦.
Similarly, we can write the expectation value of the angular part of the spin–orbit

interaction, L · S, with Ŝ‖M̂ along ϑ , as

〈L · S(M̂)〉 = 〈λz〉 cos2 ϑ + 〈λx〉 sin2 ϑ = 〈λ0〉 + 〈λ2
0〉C2

0 (M̂) (10)

where the spin–orbit interaction has been separated into an isotropic and an anisotropic
contribution

〈λ0〉 ≡ 1
3 [〈λx〉 + 〈λy〉 + 〈λz〉] (11)

〈λ2
0〉 ≡ 1

3 [2〈λz〉 − 〈λx〉 − 〈λy〉]. (12)

The spectral intensities can be obtained by using the sum rules. For the isotropic L2,3 spectrum
of a 3d transition metal [10–12]

δ0

ρ0
≡ AL3 − 2AL2

AL3 + AL2

= 〈L · S(M̂)〉
nh

= 〈λ0〉 + 〈λ2
0〉C2

0 (M̂)

nh

(13)

where AL2,3 is the integrated signal over the L2,3 edge and nh is the number of d holes.
Equation (13) shows that we can obtain the anisotropy in the spin–orbit interaction by rotating
M̂ , while the signal remains unchanged for rotation of P̂ . Thus contrary to common belief,
the isotropic spectrum depends on M̂ .

It is difficult—if not impossible—to produce isotropic light. Synchrotron radiation is
linearly polarized in the plane of the storage ring. The linear polarized signal contains an
addition term, δ2

0 , proportional to the linear dichroism,

δ0

ρ0
= δ0(M̂) − δ2

0(M̂ , P̂ )

nh − qzC
2
0 (P̂ )

(14)

where qz is the quadrupole moment of the 3d holes.

For M̂‖ε̂ : δ2
0(P̂ ) = 3

5 〈λ2
0〉C2

0 (P̂ ) + · · · . (15)

For P̂ ‖ε̂ : δ2
0(M̂) = − 2

5 〈λ2
0〉C2

0 (M̂) + · · · . (16)

These equations will be developed in section 5.
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4. Some general definitions

In preparation for the next sections we recall here the relevant definitions of the fundamental
spectra, their integrated intensities; the ground-state tensors and the relating sum rules. We
also show how the spin–orbit tensors can be split into an isotropic and an anisotropic part.

Electric-dipole transitions give the isotropic spectrum, XMCD and XMLD as

I 0 ≡ I1 + I0 + I−1 (17)

I 1
0 ≡ I1 − I−1 (18)

I 2
0 ≡ I1 − 2I0 + I−1 (19)

respectively. The spectra I z
ζ have multipole moment z and component ζ (similar to the spherical

harmonics, Y z
ζ ). Conversely we obtain

I0 = 1
3I

0 − 1
3I

2
0 (20)

I±1 = 1
3I

0 ± 1
2I

1
0 + 1

6I
2
0 (21)

which gives a perpendicular component

I⊥ ≡ 1
2 (I1 + I−1) = 1

3I
0 + 1

6I
2
0 . (22)

In spherical symmetry each I z has 2z + 1 components with ζ = −z, . . . , z,

I z
ζ ≡ n−1

1z

1∑
qq ′=−1

(−)1−q

(
1 z 1

−q ζ q ′

)
Iqq ′ (23)

where n1z =
(

1 z 1
−1 0 1

)
is a normalization factor and Iqq ′ correspond to the elements of a

density matrix. The equation can be transformed to that for any point group (cf equation (64))
in which case off-diagonal elements (q �= q ′) might be non-zero. In SO2 symmetry, ζ = 0,
so that q = q ′, and the matrix becomes diagonal in q, which is the natural quantum number of
SO2. It is useful to realize that the Iq are not components of a vector, but that they represent
(eigen-) values for light with polarization q.

For a given XAS spectrum we define the total intensity, ρ, integrated over the spin–orbit-
split core levels, j± = c ± 1

2 , and the weighted difference intensity, δ, as

ρ = Ij+ + Ij− (24)

δ = Ij+ − c + 1

c
Ij− . (25)

The integrated signals of an I z spectrum give information about ground-state tensors
〈wxyz〉 that have the same multipole moment z. Moments with even x describe the shape of the
charge distribution and those with odd x describe the orbital motion. The underscore signifies
that the expectation value is not over the electrons but over the holes, as required for XAS,
which probes the unoccupied valence states. y = 0 and 1 signify the absence and presence,
respectively, of the spin magnetic moment coupled in the total magnetic moment. Except for
w011 = 2Sz, all tensors with y = 1 will contribute to the magnetic anisotropy. The integrated
quantities ρz and δz are completely determined by a purely orbital tensor wz0z, and two tensors
with the spin coupled into the total moment, w(z−1)1z and w(z+1)1z, respectively. For the dipole
transitions c → l with l = c + 1, such as s → p, p → d and d → f, the integrated signals can
be expressed as [6]

ρz
ζ = 〈

wz0z
ζ

〉
(26)

δzζ = z

2z + 1

〈
w

(z−1)1z
ζ

〉
+

z + 1

2z + 1

〈
w

(z+1)1z
ζ

〉
. (27)
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Therefore, the signal, ρ, is connected to the charge anisotropy. For electric-dipole transitions
in SO2 symmetry we obtain using equations (20) and (26)

ρ0 = 1
3

〈
w000

〉 − 1
3

〈
w202

0

〉
(28)

where 〈
w000

〉 = nh (29)
〈
w202

0

〉 = 1

l(2l − 1)

[
3〈l2z 〉 − l2

] ≡ qz (30)

give the number of holes and the charge quadrupole moment, respectively. Likewise

δ0 = 1
3

〈
w110

0

〉 − 1
3

[
2
5

〈
w112

0

〉
+ 3

5

〈
w312

0

〉]
. (31)

The spin–orbit interaction, 〈w110
0 〉, can be separated into an isotropic and an anisotropic

part 〈
w110

0

〉 = 〈
w110(t=0)

〉
+

〈
w

110(t=2)
0

〉
(32)〈

w110(t=0)
〉 = 1

3

[〈λ1〉 + 〈λ0〉 + 〈λ−1〉
] ≡ 〈λ0〉 (33)〈

w
110(t=2)
0

〉 = 1
3

[
2〈λ0〉 − 〈λ1〉 − 〈λ−1〉

] ≡ 〈λ2
0〉 (34)〈

w110
0

〉 = (ls)−1〈LzSz〉 = 〈λ0〉 = 〈λ0〉 + 〈λ2
0〉 (35)

where 〈λk〉 ≡ (ls)−1〈LkSk〉.
The anisotropic spin–orbit tensor, w112, contains no isotropic part. Using (ls)−1〈L · S〉 =

3〈λ0〉 we obtain from its definition [6, 22]

〈w112
0 〉 ≡ 3

2ls

[
〈LzSz〉 − 1

3
〈L · S〉

]
= 3

2
〈λ2

0〉. (36)

5. Angular dependence

We shall give angular relations for the sum rules relating the charge density and the spin–
orbit interaction with the integrated signals. The angular dependence can be expressed in the
normalized spherical harmonics in polar angles

Cz
ζ (ϑ, ϕ) ≡

(
4π

2z + 1

)1/2

Y z
ζ (ϑ, ϕ). (37)

The angular dependence can be rather complicated if both P̂ and M̂ are rotated. Here, we
shall discuss two simple ways to measure the XMLD, namely the following.

(i) Linear dichroism (LD). Rotation of P̂ while keeping ε̂‖M̂ . For LD we shall denote
the multipoles by z and its components by ζ . Normally in the literature, the sum rules are
given in this geometry [1–5].

(ii) Magnetic dichroism (MD). Rotation of M̂ while keeping ε̂‖P̂ . For MD we shall
denote the multipoles by t and its components by τ .

For case (i) we obtain using equations (26) and (20)

ρz=0 = 〈
w000

〉
(38)

ρz=2
ζ = 〈

w202
ζ

〉
(39)

ρ0 = 1
3

[〈
w000

〉 − 〈
w202

0

〉]
. (40)

The P dependence should therefore satisfy

ρ(P̂ ) = 1
3

[〈
w000(P̂ )

〉 − 〈
w202(P̂ )

〉]
. (41)
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Substitution of the P dependence of the charge tensors〈
wz0z(P̂ )

〉 =
∑
ζ

〈
wz0z

ζ

〉
Cz

ζ (P̂ ) (42)

gives

ρ(P̂ ) = 1
3

[〈
w000

〉
C0(P̂ ) −

∑
ζ

〈
w202

ζ

〉
C2

ζ (P̂ )

]
. (43)

Substitution of equations (38) and (39) into (43) gives

ρ(P̂ ) = 1
3

[
ρz=0C0(P̂ ) −

∑
ζ

ρz=2
ζ C2

ζ (P̂ )

]
(44)

which suggests that ρz
ζ corresponds to that part of ρ(P̂ ) which has an angular dependence

Cz
ζ (P̂ ). We can now use this observation to find the magnetic dichroism of case (ii), since

a similar condition as equation (41) should also apply for M̂ , hence it provides a way of
normalization.

ρ(M̂) = 1
3

[〈
w000(M̂)

〉 − 〈
w202(M̂)

〉]
(45)

together with the M̂ dependence of the charge tensors〈
wz0z

0 (M̂)
〉 = 〈

wz0z
0

〉 = 〈
wz0z

0

〉
C0(M̂) (46)

gives

ρ(M̂) = 1
3

[〈
w000

〉 − 〈
w202

0

〉]
C0(M̂) (47)

so that

ρt=0 = 〈
w000

〉 − 〈
w202

0

〉
(48)

ρt=2
τ = 0. (49)

Since ρ(P̂ ) = ρ(M̂) for M̂‖P̂ ‖ε̂ we obtain with equations (38), (39), (48) and (49) the sum
rules for ζ = τ = 0

ρz=0 − ρz=2
0 = ρt=0 − ρt=2

0 = 3ρ0 = 〈
w000

〉 − 〈
w202

0

〉
(50)

ρz=0 − ρt=0 = ρz=2
0 − ρt=2

0 = 〈
w202

0

〉
. (51)

The methodology used to derive the angular dependence of charge anisotropy and its sum
rule can be applied to the magnetic anisotropy, which is obtained from the weighted difference
signal, δ.

δ(P̂ ) = 1
3

[
δz=0C0(P̂ ) −

∑
z

δz=2
ζ C2

ζ (P̂ )

]
(52)

or if M̂ is rotated then (P̂ , z, ζ ) is replaced with (M̂ , t, τ ). Using the sum rule results from
equation (27) we have

δz=0 = 〈
w110

〉 = 〈λ0〉 + 〈λ2
0〉 (53)

δz=2
ζ = 2

5

〈
w112

ζ

〉
+ 3

5

〈
w312

ζ

〉 = 3
5 〈λ2

ζ 〉 + 3
5

〈
w312

ζ

〉
(54)

so that

δ(P̂ ) = 1
3

[〈λ0〉 + 〈λ2
0〉

] − 1
3

∑
ζ

[
3
5 〈λ2

ζ 〉 + 3
5

〈
w312

ζ

〉]
C2

ζ (P̂ ). (55)
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For rotation of M̂ we have

δ(M̂) = 1
3

〈
w110(M̂)

〉 − 1
3

[
2
5

〈
w112(M̂)

〉
+ 3

5

〈
w312(M̂)

〉]
. (56)

Using the angular dependence of the tensors [7, 23]〈
w110(M̂)

〉 = 〈λ0〉C0(M̂) +
∑
τ

〈λ2
τ 〉C2

τ (M̂) (57)

〈
w112(M̂)

〉 = 3
2

∑
τ

〈λ2
τ 〉C2

τ (M̂) (58)

〈
w312(M̂)

〉 =
∑
τ

〈
w312

τ

〉
C2

τ (M̂) (59)

we obtain

δ(M̂) = 1
3 〈λ0〉C0(M̂) − 1

3

∑
τ

[(
3
5 − 1

)〈λ2
τ 〉 + 3

5

〈
w312

τ

〉]
C2

τ (M̂) (60)

from which we deduce that

δt=0 = 〈λ0〉 (61)

δt=2
τ = − 2

5 〈λ2
τ 〉 + 3

5

〈
w312

τ

〉
. (62)

It can be verified that the sum rules for ζ = τ = 0 are

δz=0 − δz=2
0 = δt=0 − δt=2

0 = 3δ0 = 〈λ0〉 + 2
5 〈λ2

0〉 − 3
5

〈
w312

0

〉
(63)

δz=0 − δt=0 = δz=2
0 − δt=2

0 = 〈λ2
0〉 (64)

which clearly brings out the difference between LD and MD.

6. Point group symmetry

The previous section treated spherical symmetry. SO2 symmetry is obtained using the group
theoretical branching (z)SO3 ⊃ (0)SO2, where ζ = τ = 0 is the only total-symmetric
representation. This means that the sum rules in equations (50), (51), (63) and (64) provide the
complete information. However, in an arbitrary point group symmetry G there can be more
than one total-symmetric representation, as will be the subject of this section.

In principle, the tensors can be developed directly in the desired point group symmetry.
Using the notation of Butler [24, 25], equation (23) generalizes to

I z
*γ0

= n−1
1z

∑
*1γ1κ1,*2γ2κ2




1
*1

γ1

κ1







1 z 1
*∗

1 * *2

γ ∗
1 γ γ2

κ∗
1 0 κ2


 I*1γ1κ1,*2γ2κ2 . (65)

Even though κ1 = κ2, this can yield non-diagonal matrix elements *1γ1 �= *2γ2. Although
equation (65) is of great benefit in computer programs [24, 26], it does not provide much
insight. We shall therefore not use the 3jm symbol here, but adopt a simpler approach.

We transform the functions of SO3 symmetry, i.e. the spherical harmonics |zξ〉, into the
‘crystal field’ functions |z*γ 〉 of the point group symmetry G,

|z*γ 〉 =
∑
ζ

|zζ 〉〈zζ |z*γ 〉 (66)

where * is a representation of G and γ is a subspecies label needed when * is degenerate.
The rotational dependence of an arbitrary physical property, I z, can be written as

I z(R̂) ≡
∑
ζ

I z
ζ C

z
ζ (R̂) =

∑
*γ ζ

I z
ζ 〈zζ |z*γ 〉〈z*γ |zζ ′〉Cz

ζ ′(R̂). (67)
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Defining

I z
*γ ≡

∑
ζ

I z
ζ 〈zζ |z*γ 〉 (68)

Cz
*γ (R̂) ≡

∑
ζ

Cz
ζ (R̂)〈z*γ |zζ 〉 (69)

we obtain

I z(R̂) =
∑
*γ

I z
*γ C

z
*γ (R̂) (70)

so that the angular dependence of the tensors with even z can be written〈
wxyz(P̂ )

〉 =
∑
*γ

〈wxyz

*γ 〉Cz
*γ (P̂ ) (71)

〈
w110(M̂)

〉 = 〈λ0〉 +
∑
*γ

〈λ2
*γ 〉C2

*γ (M̂) (72)

〈
w112(M̂)

〉 = 3
2

∑
*γ

〈λ2
*γ 〉C2

*γ (M̂) (73)

〈
w312(M̂)

〉 =
∑
*γ

〈
w312

*γ

〉
C2

*γ (M̂). (74)

Following the procedure from section 5 the resulting angular dependence is

δ(P̂ ) = 1
3 [〈λ0〉 + 〈λ2

0〉] − 1
3

∑
*γ

[
3
5 〈λ2

*γ 〉 + 3
5

〈
w312

*γ

〉]
C2

*γ (P̂ ) (75)

δ(M̂) = 1
3 〈λ0〉 − 1

3

∑
*γ

[ − 2
5 〈λ2

*γ 〉 + 3
5

〈
w312

*γ

〉]
C2

*γ (M̂) (76)

from which we deduce that

δz=0 = 〈λ0〉 + 〈λ2
0〉 (77)

δz=2
*γ = 3

5 〈λ2
*γ 〉 + 3

5

〈
w312

*γ

〉
(78)

δt=0 = 〈λ0〉 (79)

δt=2
*γ = − 2

5 〈λ2
*γ 〉 + 3

5

〈
w312

*γ

〉
. (80)

7. Example

An illustration will make the treatment in the previous section clearer. We develop the physical
properties in the group chain SO3 ⊃ O ⊃ D4 ⊃ D2 ⊃ C2 ⊃ C1 and use the notation of
Butler [24]. The alternative Mulliken notation and the relations to the |lm〉 functions are
given in table 1. First we should establish the coordinate axes. In the usual convention of the
normalized spherical harmonics

C1
±1 = ∓ 1√

2
(x ± iy) (81)

and defining the real functions

Cl
mc ≡ 1√

2
[(−1)mCl

m + Cl
−m] (82)

Cl
ms ≡ −i√

2
[(−1)mCl

m − Cl
−m] (83)
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Table 1. The relation between the partners |z*γ 〉 in the group chain SO3 ⊃ O ⊃ D4 ⊃ D2 ⊃
C2 ⊃ C1 given both in Mulliken and Butler notation [24] and the partners |zm〉 in the chain
SO3 ⊃ SO2(⊃ C1) for z = 0, 1, 2.

|0A1A1A1*1*1〉 = |000000〉 = |00〉
|1T1A2B1*1*1〉 = |110̃0̃00〉 = |10〉
|1T1EB2*2*1〉 = |111110〉 = −1√

2
[|11〉 + |1 −1〉]

|1T1EB3*2*1〉 = |1111̃10〉 = 1√
2

[|11〉 − |1 −1〉]
|2EA1A1*1*1〉 = |220000〉 = −|20〉
|2EB2B1*1*1〉 = |222000〉 = 1√

2
[|22〉 + |2 −2〉]

|2T2EB2*2*1〉 = |21̃1110〉 = 1√
2

[−|21〉 + |2 −1〉]
|2T2EB3*2*1〉 = |21̃11̃10〉 = 1√

2
[|21〉 + |2 −1〉]

|2T2B2B1*1*1〉 = |21̃2̃0̃10〉 = 1√
2

[|22〉 − |2 −2〉]

i.e. C1c = x and C1s = y, we can transform with the use of table 1 the C1
*γ in normalized

spherical harmonics, Cl
m, spherical coordinates {ϑ, ϕ} and Cartesian coordinates {x, y, z},

respectively

C1
10̃0̃00

= C1
0 = cosϑ = z (84)

C1
11110 = −1√

2
(C1

1 + C1
−1) ≡ iC1

1s = i sin ϑ sin ϕ = iy (85)

C1
111̃10

= 1√
2
(C1

1 − C1
−1) ≡ −C1

1c = − sin ϑ cosϕ = −x. (86)

We now consider the z = 0 and 2 functions, as they might appear in the anisotropy. For
the angular functions we have the isotropic part

C0
00000 = C0 = 1 (87)

together with the five branches from (2)SO3 to the total symmetric representation (0)C1, where
C2

*γ transforms as

C2
20000 = −C2

0 = − 1
2 (3 cos2 ϑ − 1) = − 1

2 (3z
2 − 1) (88)

C2
22000 = 1√

2
(C2

2 + C2
−2) ≡ C2

2c = 1
2

√
3 sin2 ϑ cos 2ϕ = 1

4

√
3(x2 − y2) (89)

C2
1̃1110

= 1√
2
(−C2

1 + C2
−1) ≡ C2

1c =
√

3 sin ϑ cosϑ cosϕ =
√

3zx (90)

C2
1̃11̃10

= 1√
2
(C2

1 + C2
−1) ≡ −iC2

1s = −i
√

3 sin ϑ cosϑ sin ϕ = −i
√

3zy (91)

C2
1̃2̃0̃00

= 1√
2
(C2

2 − C2
−2) ≡ iC2

2s = i

2

√
3 sin2 ϑ sin 2ϕ = i

√
3xy. (92)

The relevant tensors are obtained by looking for all branchings that produce the total
symmetric representation in the point group of consideration. In all point groups one
component is needed to give the isotropic moment. Furthermore, in all groups the angular
dependence of the orbital moment is C1

0 = cosϑ = z. This is true also in C1 symmetry if we
rotate the Ẑ-axis along the orbital moment, in which case C1

11110 and C1
111̃10

are zero. Thus
these components of z = 1 give the direction of the orbital moment.

In SO2, D4 and D3 symmetry the quadrupole moment is determined by one component.
In D2 symmetry two extra components are needed to characterize the quadrupole moment. An
additional two components in C1 are needed to determine the orientation of the axis.
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We shall treat here the case of D2 symmetry. The total-symmetric representation (0)D2

gives the non-zero quadrupole moments〈
w0

00000

〉 = 〈w0〉 (93)〈
w2

20000

〉 = −〈w2
0〉 (94)

〈
w2

22000

〉 = 1√
2

[〈w2
2〉 + 〈w2

−2〉] ≡ 〈w2
2c〉. (95)

Note that the sign convention [23] has no consequence for the physics, for example〈
w2

20000

〉
C2

20000 = 〈w2
0〉C2

0 . (96)

First, we work out the Cartesian tensor for the orbital moment introduced in section 3.

〈L(M̂)〉 =
∑
b=0,2

b∑
β=−b

〈Rb
β〉Cb

β(M̂) = 〈R0〉 + 〈R2
0〉C2

0 (M̂) + 〈R2
2c〉C2

2c(M̂) (97)

〈R0〉 = 1
3 [〈Rx〉 + 〈Ry〉 + 〈Rz〉] (98)

〈R2
0〉 = 1

3 [2〈Rz〉 − 〈Rx〉 − 〈Ry〉] (99)

〈R2
2c〉 = 1

2 [〈Rx〉 − 〈Ry〉] (100)

or conversely,

〈Rz〉 = 〈R0〉 − 〈R2
0〉 (101)

〈Rx〉 = 〈R0〉 + 1
2 〈R2

0〉 + 〈R2
2c〉 (102)

〈Ry〉 = 〈R0〉 + 1
2 〈R2

0〉 − 〈R2
2c〉. (103)

By taking 〈R2
2c〉 = 0, i.e. 〈Rx〉 = 〈Ry〉, we retrieve the result for SO2 symmetry in section 3.

Similarly, the XMLD signals give the magnetic anisotropy

δz=2
ζ = 3

5 〈λ2
ζ 〉 + 3

5

〈
w312

ζ

〉
(104)

δt=2
τ = − 2

5 〈λ2
τ 〉 + 3

5

〈
w312

τ

〉
(105)

with ζ = {0, 2c} and τ = {0, 2c}, where

λ0
0 = 1

3 (λx + λy + λz) (106)

λ2
0 = 1

3 (2λz − λx − λy) (107)

λ2
2c = 1

2 (λx − λy). (108)

At an arbitrary direction we shall measure a mixture of these signals

3δ(P̂ ) = δ0 − δ2
0C

2
0 (P̂ ) − δ2

2cC
2
2c(P̂ )

= 〈λ0〉 + 〈λ2
0〉 +

[ − 3
5 〈λ2

0〉 − 3
5

〈
w312

0

〉]
C2

0 (P̂ ) +
[ − 3

5 〈λ2
2c〉 − 3

5 〈w312
2c 〉]C2

2c(P̂ )

(109)

3δ(M̂) = δ0 − δ2
0C

2
0 (M̂) − δ2

2cC
2
2c(M̂)

= 〈λ0〉 +
[

2
5 〈λ2

0〉 − 3
5

〈
w312

0

〉]
C2

0 (M̂) +
[

2
5 〈λ2

2c〉 − 3
5 〈w312

2c 〉]C2
2c(M̂). (110)

Using

C2
0 (Ẑ) = 1; C2

0 (X̂) = C2
0 (Ŷ ) = − 1

2 ; C2
2c(Ẑ) = 0;

C2
2c((X̂ ± Ŷ )/

√
2) = ± 1

2

√
3

we obtain for the three different geometries

3δ(εzMzPz) = 〈λ0〉 + 2
5 〈λ2

0〉 − 3
5

〈
w312

0

〉
(111)

3δ(εzMzPx,y) = 〈λ0〉 + 13
10 〈λ2

0〉 + 3
10

〈
w312

0

〉 ± 3
10

√
3〈λ2

2c〉 ∓ 3
10

√
3

〈
w312

2c

〉
(112)

3δ(εzMx,yPz) = 〈λ0〉 − 1
5 〈λ2

0〉 + 3
10

〈
w312

0

〉 ± 1
5

√
3〈λ2

2c〉 ∓ 3
10

√
3

〈
w312

2c

〉
(113)
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with difference spectra

3δ(εzMzPz) − 3δ(εzMzPx,y) = − 9
10 〈λ2

0〉 − 9
10

〈
w312

0

〉 ± 3
10

√
3〈λ2

2c〉 ± 3
10

√
3
〈
w312

2c

〉
(114)

3δ(εzMzPz) − 3δ(εzMx,yPz) = 3
5 〈λ2

0〉 − 9
10

〈
w312

0

〉 ∓ 1
5

√
3〈λ2

2c〉 ± 3
10

√
3
〈
w312

2c

〉
. (115)

Of course, these results could also have been obtained directly by substituting equations (54)
and (61) into

3δ(εzMzPz) − 3δ(εzMzPx,y) = − 3
2δ

z=2
0 ± 1

2

√
3δz=2

2c (116)

3δ(εzMzPz) − 3δ(εzMx,yPz) = − 3
2δ

t=2
0 ± 1

2

√
3δt=2

2c . (117)

8. Conclusions

We have shown that the spin–orbit interaction, 〈w110〉, is a tensor with the same properties as
the MAE. This provides the possibility to measure the angular dependence of the spin–orbit
interaction, and hence the MAE, by forcing M̂ out of its easy direction of magnetization.
Such a measurement could already be done with isotropic light, if it was available to the
experimentalist. With linear polarized light there is an additional contribution due to the
anisotropic spin–orbit tensor, 〈w112〉.

We have discussed the different methods to obtain the element-specific MAE of magnetic
thin films and surfaces. Although XMCD has become a routine method, it suffers from the
shortcoming that it does not supply the orbital magnetization of the majority spin subband. This
drawback is absent in XMLD, which makes the latter a very promising technique. Recently,
Dhesi et al [18] obtained experimental confirmation for the proportionality between the XMLD
branching ratio and the MAE. The anisotropy of the in-plane spin–orbit interaction, 〈λ2

2c〉, in
vicinal Co films with varying step densities was measured using XMLD. A linear increase in
〈λ2

2c〉 with Co step density was determined using the sum rule. The proof of the XMLD sum
rule was enabled by the large sensitivity of 〈λ2

2c〉 to the MAE. Interestingly, a similar prefactor
C arises in XMLD as appears in XMCD. This indicates that high-energy spectroscopies of the
MAE must differ from low-energy macroscopic techniques. Given that XMCD has already
allowed the characterization of many interesting ferromagnetic systems, XMLD can make an
even greater impact since it measures directly the origin of the MAE, the spin–orbit anisotropy,
and is sensitive to antiferromagnetism.

Currently XMLD, as a prototype experiment, belongs to the realm of physics. To a lesser
extent, this is also true for XMCD. However, there is a large number of dedicated insertion-
device beamlines being built or projected at third-generation synchrotron radiation facilities.
These beamlines will make techniques such as XMCD and XMLD more accessible to non-
experts and will greatly extend the scope of these techniques.
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1995 Phys. Rev. Lett. 75 3752
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